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A, INTRODUCTION

In analyzing experimental thermodynamic data for solid
solutions it is convenient to classify the solutions into two cate-
gories; in one category we deal with solutions in which the inter-
action between solute atoms manifests itself in a non-random solute
atom distribution and the second category is a special case of the
first where the solution is dilute enough to enable solute-solute
interactions to be ignored and the solute atom distribution is ran-
dom. In the general category of solutions the partial energy of
solution fﬁ is a function of composition and the partial entropy Eg
is non-ideal. In the second class of solution, which may be termed
guasi-regular, Eﬁ is not dependent on the solute concentration and
although the entropy may be non-ideal the configurational contribu-
tion to the partial entropy is ideal and thus easily calculated.
From an experimental point of view we can say that a solution is
quasi-regular when it is dilute enough for the solute to obey Henry's
law.

Most of the statistical theories of solutions assume that
the state sum Oi due to the internal degrees of freedom (terms due to
vibrational, magnetic, or electronic specific heat changes) is separable
from the configurational state sum Oc so that the state sum O for the

whole solution can be written,

0= Qi §Tg(Ec) e-Ec/kT (1)

Cc

where g(Ec) denotes the number of non-degenerate states in the configu-

ration of energy'Ec. The evaluation of the combinatorial factor g(EC)




in equation (1) is simple for e chain of atoms and the calculation
for a two-dimensional lattice (Ising model) can be carried out when
the problem is formulated in an appropriate matrix notation(l). How-
ever, the exact evaluation of g(Ec) for a three-dimensional lattice
meets with great mathematical difficulty and has not yet been accomplished.
Much of statistical solution theory consists of attempts to estimate
the thermodynamic parameters of solutions by making approximations for
g(EC) in equation (1).

The simplest approximation is the zero-order Bragg and Williams(z)
approximation in which g(Ec) is replaced by a term corresponding to random
mixing in spite of the fact that the energetics of the sclution are non-

(3)

ideal. A better approximation is the quasi-chemical model in which
the energy of solution is characterized by pairwise interaction energies
which are assumed to be independent of composition. The number of con-
figurations corresponding to a given energy is found by counting the
possible orientations of each pair in the lattice. If the degree of
short-range-order in a solution is determined, the excess thermodynamic
functions can be calculated from the quasi-chemical model. For a few
metallic solid solutions (concentrated Cu-Au alloys) the model is remark-
ably successful but in general agreement is poor(h). It is to be noted
that both the Bragg-Williams and the guasi-chemical models do not take
non~-configurational entropy changes into account.

Because of the incomplete state of the statistical interaction
theories the interpretation of experimental thermodynamic data on concertrated

solutions is subject to more limitations than the analysis of data for

gquasi-regular solutions. In these latter solutions the combinatorial



factor g(Ec) reduces to its value in an ideal solution and the solid
solution crystal is characterized by a single interaction energy. Thus
the state sum and the chemical potential of a solute atom can be written
down explicitly. The chemical potential ui of a solute atom in a quasi-

(5)

regular solution is given by
s _ = =v 6/8
= - +
by = By = TSy + KT In 7—g7g (2)
where 8 is the ratio of the numbers of solute atoms to solvent atoms, B
is the number of interstices of a given kind per lattice atom and Eﬁ is
the energy required to insert a solute atom into the solution measured
with respect to the energy of an atom at rest in a vacuum. The term
§f is the partial excess entropy of a solute atom,

=v _ lim (38 8
Su_Cu"O (Bﬁ)v+kln1-g7e (3)

u

where S is the total entropy of the solution. Throughout v is used
to denote solvent and u to denote solute.

Equation (2) can be used in the analysis of solubility data
for quasi-regular solutions and the parameters found are important in
the development of the theory of interstitial solid solutions. The
energy ﬁ; can be used to check fundamental quantum mechanical calculations
for the case when the interaction energy is not complicated by solute-
solute terms. Furthermore since the partial configurational entropy
- k 1n 8/p/(1 - 0/R) is known explicitly, analysis of the solubility
data yields §X, the non-configurational partial entropy. For solutions
where no magnetic or electronic specific heat changes occur this excess

partial entropy can be interpreted as a vibrational entropy due to the



prerturbation of the normal modes of the solvent lattice which occurs
when a solute atom is inserted. The parameters ﬁ; and EX are also
useful in the development of theories for concentrated solutions since
the partial energies and entropies in concentrated solutions must
approach ﬁ; and §Z in the limit as the solute concentration approaches
low values.

This report will present a review of some of the models used
to represent quasi-regular interstitial solid solutions together with
a discussion of the applications of the models to the analysis of data
for the variation of the solute solubility with temperature. Instead
of attempting a general approach the discussion will be limited to a
consideration of two groups of interstitial solutions - nitrogen and
carbon dissolved in iron, and hydrogen alloys.

The solutions and models discussed are in thermodynamic
equilibrium with a second phase. The solvent lattice is "perfect” in
that it does not contain defects such as vacancies or dislocations at
a concentration which would provide low energy sites where $ lute atoms

could locate and give rise to a measurable deviation from the normal

lattice solubility.
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B. IRON-BASED INTERSTITIAL SOLID SOLUTIONS

The iron-carbon system is one of the most intensively studied
binary systems. Much data exists on the equilibrium of dilute solid
solutions of carbon in both « and y-iron with a second phase, both
when the second phase is a solid or liquid (equilibrium diagram work)
and when the second phase is gaseous. If the thermodynamic functions
of the C-atoms in the second phase are known then experimental data
for the variation of the equilibrium with temperature can be analyzed
to give the thermodynamic parametersof the C-atoms dissolved in the
solid.

Smith(6) and Dlinwald and Wagner(7) have measured the equilibrium
between ferrite and austenite and mixturesof CO + 002 and H2 + CHh at
several temperatures and more recently Ellis, Davidson, and Bodsworth(8)

determined the equilibrium between austenite and a gas containing CH&’

H2, C02, CO and H2O at two temperatures. In the experiments of Smith

2

and Dlnwald and Wagner the variation in the ratios r, = PCH /PH
i

and

5 2
r, =P /P with the C-content in ferrite and austenite was measured.
2 Cco CO2

From a knowledge of the equilibrium constants for the reactions:

o, (g) + ¢ (gr) > cH (g)
co, (g) + ¢ (gr) = 2¢0  (g)

the activity a of the carbon in solution relative to graphite (gr) can
be calculated from the measurements of ry and r2. It was found in both
sets of experiments that the C-atoms in ferrite (at 750° C and 800° C)
obey Henry's law up to the limit where the o« = ¥y transition occurs. The
austenite equilibrium was measured at 1000, 1070 and 1200° C and it is

found that the solute obeys Henry's law up to about 1 = 2 At% but at

higher C-contents there is a marked departure and the C-activity increases



with C-content more rapidly than Henry's law would predict.

Let us first give a brief discussion of the models which have
been considered to explain the deviation from Henry's law in the more
concentrated austenite and then proceed to a discussion of the very
dilute solutions.

Darken and Smith(g) considered a simple statistical model in
which a C-atom in its octahedral site in the F.C.C. lattice has either
one or no neighboring C-atoms in the 12 nearest neighbor octahedral
sites. This model thus contains two characteristic interaction energies
since it is assumed that the number of C-atoms having more than one
nearest neighbor C-atom is negligible and a solute atom does not inter-
act with another solute atom situated at greater distance than the
first shell of interstitial sites. Darken and Smith showed that this
model gives reasonable agreement with the measured variation in the
activity of C with composition. It is interesting to note that Darken
and Smith concluded from the analysis of the data in the light of their
model that there was a slight repulsive force between C-atoms in austenite
which reduces the concentration of C-C pairs below that which corresponds
to random mixing.

The exclusion of solute atoms from nearest neighbor sites in an
interstitial solution has been a basic postulate in other models used
to explain the C-activity data in austenite. This "blocking" was formu-

(10)

lated by Speiser and Spretnak who considered that an integral number

z of sites could be blocked by a solute atom. The molar configuraticnal
entropy of such a solution in terms of . the atom fraction of solute,

(5)

is given by



sg = - % {cu z 1In (—%) -f(-c)in(L-c)

+8 (1 - (&)

cu(B + z) cu(B + z)
G P R

For a perfectly random solution (no blocking) z = 1 and putting z = 1
in Equation (4) gives the configurational entropy of a random inter-

stitial solution Sc.

s = -R {Eu In %; -B(1 - cu) In (1 - cu)

cu(B + 1) cu(ﬂ + 1) }

+B(l--———s———)ln(1-'—';———) (5)

A plot of these two functions for z = 5 is shown in Fig. (1). The
entropy curve for the blocked solution does not differ sensibly from
that of the random solution until ¢ is about 2.0 At%.

It has been customary to describe the thermodynamics of
interstitial solutions in terms of the variation in activity ac with
solute content and, in parallel to the treatment of substitutional

solutions, to define ac by an equation of the type,
s o]
= +
Mo by kT 1n a, (6)

using the pure solute as a reference material (graphite in the case
of Fe-C solutions). However, it can be seen from equation (2) that
for an ideal interstitial solution

C

S o} u -
Hy = My T I TUg- ()

where, for simplicity we have put R = 1. Thus even for an ideal inter-
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stitial solution the activity defined in equation (6) is not equal
to the atom fraction of solute and au is not proportional to L in
a quasi-regular solution. Fig. (1) shows the activity vs composi-
tion curve for an ideal solution and it can be seen that at solute
compositions greater than about 2 At% there is a sensible departure
from linearity. In a rigorous discussion of interstitial solid

solutions Henry's law should be restated or the activity should be

defined by an equation of the form

a 1
s _ 0 u
pu = uu + kKT 1n i:Z?:;:r_-_ . (8)

(5)

It can be shown that the chemical potential of a blocked solu-

= = 8/8
wooo= E, - Tsu + ¥T 1n To82/8 . (9)

Thus if Eﬁ and §z are independent of composition then the composi-
tion dependence of the activity at a given temperature is determined

by the expression

8/8 ¢

T-62/8 - 1-cu(;+ﬁ (10)

where B = 1. A plot of this function for z = 5 is shown in fig. 1.
It can be seen that there is a strong departure of this function from
plot for an ideal solution. The departure becomes experimentally signifi-
cant between c, = 0.01 and 0.015.
Many models have been set up to explain the thermodynamic be-

havior of ¢ in y-iron in which it is assumed that although blocking is



present and the configurational entropy is non-random the partial
energy and partial non-configurational entropy are independent of solute

content (as in equation (9)). Scheil(ll)(le)

and Kaufman, Radcliffe,
and Cohen(13) have analyzed the data of Smith and deduced that z = 5
from the solute activity data. On the other hand Schwarzmann and
Temkin(lh) deduced that & C-atom blocks only three other interstitial
sites so that z = 4. Ellis, Davidson, and Bodsworth(g) determined the
variation in ac with C-content in austenite at 925° C and 1050° C. At
both temperatures a, began to deviate from Henry's law at between c, =
003 and 0.0k. The authors concluded from the analysis of their data
that z = k.

Lét us now turn to aconsiderationof the Fe-C solutions which
are dilute enough to obey Henry's laws. McLellan(ls) has analyzed the
data of Smith and Dlinwald and Wagner for the equilibrium of CO-CO. and

2

CHh - H, mixtures with ferrite and austenite, utilizing only the data

2

for equilibriums in the range where the C-activity (as measured by ry
and r2) varies linearly with C-content. Suitable equilibrium determi-
nations were made at 750° C and 800° C for ferrite and 94LO° C, 1000° C,
1070° C, and 1200° C for austenite. In this work it was assumed that
the solid solutions were quasi-regular so that the chemical potential
of a solute atom in solution is given by equation (2). This chemical
potential was then equated to that of C-atoms in the gas, enabling a
solubility equation to be deduced. The theoretical solubility equation

was used to extract the relevant thermodynamic parameters of the solid

solutions from the experimental equilibrium data.
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The solubility equation deduced for the CHh - H2 equilibriums is,

8 ) rkT3¢ -LE - -2E ]/RT 5 /k (10)

1-
CH“ 32 g2 2 /r 3/2
shere @ {(W) BTk 1 /{(QnmCHuk) .
oh? ) ] n3
2 3/2
T (enIC%h k) 2 o)
12h

and for the 002 -~ CO equilibriums

/ 5V
1%% = 7/u r—ﬁz -[ CO 'EECO]/ /k (12)

o 26/

where

I(anncok)3/2.82 K 1/{(2 k)3/2 .8:121001{)2 )
ST 2

In these equations Z denotes the vibrational state sum of the molecules
in the gas, I their moments of inertia, m their mass, and -E° is the
dissociation energy at 0° K. These solubility equations take the com-
plex temperature dependence of the chemical potential of solute atoms
in the gas explicitly into account and enable reliable values of Eﬁ and
§Z to be obtained from the experimentally determined variation in 6

with ry and r, at different temperatures.

2
A similar analysis has been applied to the solubility data

for nitrogen in ferrite and austenite in equilibrium with Ne gas.(S)

The solubility of N in an interstitial solution in equilibrium with

NE molecules is
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1/2
o = PN2 b e'(Eu"!g:EI?I )/xx e-s-:;/k (14)
1-6/8 TT/h( v )1[2 2
Pz
. 3 2 1/2
vhere A = { i 375 22h . %E (15)
(2ﬂ2me) 8n IN2k
where PN is the partial pressure of N2 molecules. This equation
2

was used to estimate the values of E; and §X from the experimental
solubility data.

The thermodynamic data obtained from these analyses are given

in Table l .
TABIE 1.
So.a.uvlon F—.: §"V/n
u u
k.cal[mole
- o Fe -1k7.2 5.20
- y Fe -155.2 5.T5
- o Fe - Th.3 T.20
N - v Fe - 81.9 6.20

The equilibrium data of Ellis, Davidson, and Bodsworth(g) have not
been analyzed by this technique but estimates of Eﬁ and §X can be

obtained from their published activity data from the equation

c = = o]
u_ -0 fxT (S’ - 8))/x p
1-2c - aue u e u u (lU)
u
where Aﬁ; = ﬁ; - Hz is the relative partial molar enthalpy of a solute

aton and Sﬁ is the standard entropy of the pure solute (graphite).
The value of Aﬁh deduced obtained from the data is 11.57 k. cal/mole
and this is presumably a mean value for the two temperatures at which

the activity was measured. Using enthalpy tables(lo) to obtain Hi the
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value of ﬁ; is -154.5 k. cals/mole in good agreement with value given
in Table 1. The value of §X estimated from (EZ - Sﬁ) and tables of

(16) is 5.7T7 k.

standard entropies
The advantage of deducing the thermodynamic parameters of
a solution from solubility data with a closed solubility equation is
that it obviates the use of a reference state and the partial entropy
can be obtained without recourse to extra data on the equilibrium of the
gas phase with graphite. Moreover, the analysis is carried out in terms
of equations which are easily understood physically.
The data of Table 1 was obtained using the assumption that
solute atoms occupy only one kind of interstitial site. Recently(IT)
it has been shown that if the C-atoms in o-iron can occupy both the
octahedral and tetrahedral sites, the deviation from linearity at high
temperatures of an Arhenius plot of the diffusivity of C through o-iron
could be explained. The thermodynamic functions of a solution with dual
site occupancy will differ from those of a quasi-regular solution in which
only one kind of site is occupied. The differences in partial energy,

entropy, and Gibbs potential between & dual occupancy solution and a

single occupancy solution of the same composition are given by

& = & (1-9) (16)
& 4B

A5 F(1-8)-kx1ns (17)
Aaﬁ = kI 1ln § (18)

where A& is the fraction of solute atoms located at octahedral sites.

The analysis of the diffusion data using this model indicated that at
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800° C only one solute atom in 1000 is located at a tetrahedral site
and thus no effect of their presence on the measured thermodynamic
parameters should be seen. They have a measurable effect on the dif-
fusivity at high temperatures since the diffusion rate via tetrahedral
sites is relatively large.

The information table 1 represents reliable data for the
thermodynamics of quasi-regular Fe-C and Fe-l solutions. A brief dis-
cussion of the partial energies and entropies has been given(IS) and
it was shown that for both N and C solutes electronic specific heat and

nagnetic spin changes were probably negligible and §z arises from vibra-
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C. HYDROGEN-METAL SOLUTIONS

In this section the experimental solubility data for hydrogen-
metel solutions are presented, previous models for hydrogen alloys are
briefly discussed, and finally the dataars analyzed by assuming & quasi-

regular solution model for the scid.

1. The Experimental Data

The solubility of hydrogen in metals has been most extensively
measured for the metals in the first and second long periods of the
Periodic Table. The variation of the hydrogen solubility with tempera-
ture at one atmosphere pressure for metals in the first long period is
given in Fig. (2), that for metals in the second long period is in
Fig. (3) and data for other metals is given in Fig. (4). The sources of
the data are indicated in Table (2). The reference works of Smith(lB)
and Smithells(l9) have been indicated repeatedly for metals where they
give solubilities recalculated from original data, however these data
points were not included in the computer analysis of the solubility data
(next section).

The data in Figs. (2), (3), and (4) cover a wide range of solu-
bilities; at 400° C the solubility of hydrogen in thorium is greater than
that in aluminum by a factor of 108. For metals which dissolve only
small amounts of hydrogen, changes in lattice parameter with hydrogen
content are probably too small to be measurable. For metals which dis-
solve large amounts of hydrogen some data is available on changes of
lattice parameter and the positions occupied by the H-atoms in the metai
lattice. Shull, Rundle and Woolan(eo) have shown that for zirconium
and thorium there is little change in lattice parameter until appreciable

amounts of hydrogen are absorbed and then there is a change in the lattice



VARIATION OF HYDROGEN SOLUBILITY IN
PERIOD IV METALS WITH TEMPERATURE

Ti

ccH,/GRAM-ATOM

400 600 800 1000 1200 1400

TEMPERATURE °K

Fiq- 2




Fig. 3

ccH,/GRAM-ATOM

VARIATION OF HYDROGEN SOLUBILITY IN
PERIOD V METALS WITH TEMPERATURE

10°®

| I I I |
400 600 800 1000 1200 1400

TEMPERATURE °K




Fig. 4

ccH,/GRAM-ATOM

103

10

VARIATION OF HYDROGEN SOLUBILITY IN
PERIOD VI AND VII METALS WITH TEMPERATURE

Th

Pt

600

800

1000

TEMPERATURE

1200
°K

1400




TABLE 2

SOURCES OF THE HYDROGEN SOLUBILITY DATA

. J. Smithells, loc. cit.

Beckmann, Dissertation, Leipzig. -~ quoted by A. Sieverts a.nd-
H. Hagen: Z. Physik. Chem. 169, 237 (193L).

Sieverts and H. Hagen, Z. Physik. Chem. 169, 237 (193L).

. Siegelin, K. H. Lieser, and H. Witte, Z. Elektrochem. 61, 359

(1957).

1
Al (@) C. E. Ransley and H. Neufeld, J. Inst. Metals. T4, 599 (19L8).
O . Eichenauer and A. Pebler, Z. Metallk. 48, 373 (1957).
' ) L. L. Bircumshaw, Trans. Faraday Soc. 31, 1439 (1935).
Ti o A. Sieverts, Z. Metallk. 21, 37 (1929).
@) D. P. Smith, Hydrogen in Metals, (The University of Chicago
Press, Chicago, 191&8-5- - quoted from Sieverts.
v L. Kirschfeld and A. Sieverts, Z. Phyik. Chem. lhEA, 227 (1929).
D A. Sieverts, H. Huber, and L. Kirschfeld, Chem. Ber. 59, 2891
(1926).
v FAN D. P. Smith, loc. cit.
(@) L. Kirschfeld and A. Sieverts, Z. Elektrochem. 36, 123 (1930).
Cr o D. P. Smith, loc. cit.
O C. J. Smithells, Metals Reference Book, (Interscience Publishers,
Inc., New York, i955) 2nd ed pp. 535-530C.
v L. Luckemeyer-Hasse and H. Schenk, Arch. Eisenhiittenw. 6, 209
(1932).
© Mn @) A. Sieverts and H. Moritz, Z. Physik. Chem. 1804, 249 (1937).
O E. V. Potter and H. C. Lukens, Trans. AIME. 171, 401 (1947).
o C. J. Smithells, loc. cit.
Fe ® D. P. Smith, loc. cit.
@) E. Martin, Arch. Eisenhilittenw. 3, 407 (1929).
D A. Sieverts, Z. Physik. Chem. 77, 591 (1911).
B W. Eichenauer, H. Kunzig, and A. Pebler, Z. Metallk. L9, 220
(1958). ,
A C. J. Smithells, loc. cit.
PAN A. Sieverts and W. Krumbhaar, Chem. Ber. 43, 893 (1910).
v A. Sieverts, G. Zapf, and H. Moritz, Z. Physik. Chem. 18;2, 19
(1938).
Co () D. P. Smith, loc. cit.
B
O
A

. Sieverts, Z. Metallk. 21, 37 (1929).




Mlller, Dissertation, Leipzig, 1911. - quoted by A. Sieverts,
Z. Physik. Chem., 88, 103 (191k). :

. Jurisch, Dissertation, Leipzig, 1912. - quoted by A. Sieverts,

Z. Physik. Chem. 88, 103 (191L4).

Ni ® D. P. Smith, loc. cit.
- C. J. Smithells, loc. cit.
@) K. H. Lieser and G. Rinck, Z. Elektrochem. 61, 357 (195T7).
v W. Eichenauver, W. Loser, and H. Witte, Z. Metallk. 56, 287
(1965).
D K. H. Lieser and H. Witte, Z. Physik. Chem. 202, 321 (195k).
JAN A. sieverts and W. Krumbhaar, Chem. Ber. 43, 893 (1910).
AV4 A. Sieverts, Z. Metallk. 21, 37 (1929).
Cu ® C. J. Smithells, loc. cit.
O W. Himmler, Z. Physik. Chem. 195, 2hk (1950).
v W. Eichenauer, W. I8ser and H. Witte: Z. Metallk. 56, 287
(1965).
'®) W. Eichenauer and A. Pebler, Z. Metallk. 48, 373 (1957).
B K. H. Lieser and H. Witte, Z. Physik. Chem. 202, 321 (195k4).
Zn O K. Iwase, Sci. Rept. Tokohu Univ. First Ser. 15, 531 (1926).
Zr o C. J. Smithells, Gases and Metals, (Chapman and Hall, Ltd.,
T Andn 1027) nn . 1A
&N/l \.LVAA, J-/J|I P e ade
@) M. N. A. Hall, S. L. H. Martin, and A. L. G. Rees, Trans.
Faraday Soc. 41, 306 (1945).
D A. Sieverts and H. Moritz, Z. Anorg. Allgem. Chem. 247, 124
(1941).
B8 D. P. Smith, loc. cit.
Nb o A. Sieverts and H. Moritz, Z. Anorg. Allgem. Chem. 247, 124
(1941).
Mo . C. J. Smithells, Metals Reference Book, (Interscience Publishers,
Inc., New York, 1955) 2nd ed. pp. 535-536.
@) A. Sieverts and K. Bruning, Arch. Eisenhiittenw. 7, 641 (193k4).
Pd ® A. Sieverts and G. Zapf, Z. Physik. Chem. 1T74A, 359 (1935).
'®) A. Sieverts, Z. Physik. Chem. 88, 103 (191k).
D J. Hagenacker, Dissertation, Leipzig, 1909. ~ quoted by A. Sieverts,
Z. Physik. Chem. 88, 103 (191k).
[ F.
v

Jurisch, Dissertation, Leipzig, 1912 and H. Oehme, Disserta-
tion, Leipzig, 1912. - quoted by A. Sieverts, Z. Physik. Chem.
88, 103 (191k).




0 A. sicverts and W. Danz, Z. Physik. Chem. 34B, 158 (1936).
v A. sieverts and W. Krumbhaar, Chem. Ber. 43, 893 (1910).
Ag 0 E. W. R. Steacie and F. M. G. Johnson, Proc. Roy. Soc. (London)
Ser. A, 117, 662 (1928).
" ] W. Siegelin, K. H. Lieser and H. Witte, Z. Elektrochem. QJ;, 359
(1957).
O C. J. Smithells, loc. cit.
A D. P. Smith, loc. cit.
Ta @) A. Sieverts and E. Bergner, Chem. Ber. L4k, 2304 (1911).
@ D. P. Smith, loc. cit.
O A. Sieverts, Z. Metallk. 21, 37 (1929).
Pt O A. Sieverts and E. Jurisch, Chem. Ber. .45, 221 (1912).
O D. P. Smith, loc. cit.
® C. J. Smithells, loc. cit.
Th O A. Sieverts and H. Moritz, Z. Anorg. Allgem. Chem. 2b7, 124
(1941).
o D. P. Smith, loc. cit.
O A. Sieverts, Z. Metallk. 21, 37 (1929).
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structure when the compounds ZrH and ThH are formed. They showed that
these compounds are body-centered tetragonal and, by neutron diffraction,
that the hydrogen atoms are situated at the center of tetrahedrons of

metal atoms. Woolan, Cable, and Koehler(el)

showed by neutron diffraction
that the H atoms occupy octahedral sites in F.C.C. Ni.

This work deals only with hydrogen-metal solutions in equilib-
rium with gaseous hydrogen. It is however possible to surcharge a
metal by making it cathode in an electrolytic cell, especially if the
metal surface is coated with certain catalysts. Occlusion of ten times
the amount of hydrogen dissolved in the metal in equilibrium with gaseous
hydrogen atl atmos.pressure can occur and this may damage the structure
of the metal and even produce large blisters on the surface. The sur-
charged hydrogen alloys are not stable and the hydrogen is occluded in
rifts; the pockets of hydrogen responsible for the formetion of blisters
undoubtedly contain molecular hydrogen.

Althougﬁ>the occlusive capacity of a metal in cathodic sur-
charging can be greatly increased by cold-working, the equilibrium solu-
bility is not changed thus. Carmichael, Hornedy, Morris and Parlee(zz)
have shown that a-iron has the same hydrogen solubility in the well-
annealed state as it has after being cold worked by 75% and annealed
for a short time at 430° C. At this annealing temperature the greater
part of the cold-worked hardness remains and there is no microscopically
visible recrystallization.

It may have been supposed that the degree of cold-working would
affect the hydrogen solubility by increasing the number of dislocations

in the metel and thus providing low energy sites for the hydrogen atoms.

However, it can easily be shown that this effect is not important at
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temperatures above which the hydrogen solubility of most metals can
be measured. For B.C.C. o-iron the dislocations lie along (110) -
planes and according to the measurements of Nutting and Brandon(23)
there are lOlo dislocations cutting an area of 1 cme. in heavily
cold-worked lron. This infers that the number of dislocation sites
per cm2. is 5 x 1017. At 500° C iron dissolves 4O x lO17 hydrogen

atoms per cm3.; thus even at low temperatures in heavily cold-worked

metal there are many more hydrogen atoms than dislocation: sites.

2. Models for Hydrogen-Metal Solutions

A model for hydrogen-metal solutions was proposed by Fowler

and Smithe11s(?¥)

for those metals whose H-solubility is small (Cu, Ni,
Fe, Co) in which the H-atoms dissolve as protons and have transla-
tional freedom in a large fraction f of the volume of the metal. The

chemical potential ug of a proton in the solid can be then written

in the form

P
S - B 4 ¥ In n + XT 1n e (19)

where Eo is the energy of an H-atom at rest in the solution with respect
to an H-atom at rest in a vacuum. Equating this uﬁ to the chemical

potential ug in the gas yields the solubility equation,

: 1/2
pen.‘l/h .1 (2mn£)3/2{ n3 ) 2n° .1.} fx
wpl/2 N, b (eremk)3/2 8Pk K
H H

2 2
1.0
x e-(Eo - E'EHQ)/kT (20)

where p is the density of the metal and M its atomic weight.
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There is however a serious objection to the translational
model since it predicts diffusion coefficients for the diffusion of
hydrogen through the metal lattice which are much higher than the
measured values. In this model the diffusion of hydrogen through
the metal is analagous to the Knudsen flow of gas molecules at low
pressure through a tube whose radius g is small compared to the mean
free path of the gas molecules. The diffusion coefficient for such
a flow is proporticnal to g;, where Vv is the mean velocity of the

molecules(25), so that: -
1/2

D = K'g@%) (21)
MH is the molecular weight of the gas and the coefficient K' is close
to unity. Putting g = 10-8 em, D = 1.52 x 1073 cme/sec at 500° K.
The ratio of this calculated D to the smallest observed D (for o-iron)
at 500° K is 2.7 x 10*.

For copper (f = 0.8) equation (20) gives reasonably good
agreement with the measured solubility data but for other metals the
agreement is poor.

Fowler and Smithells(gh) also deduced a solubility equation
for the hydride-forming metals by assuming that the H-atoms mix randomly
in the metal lattice, do not perturb its vibrational spectrum, and do
not interact. It was assumed also that the vibrations of the dissolved
H-atoms were not excited in the temperature range considered. It was
shown that despite these radieal assumptions the general shape of the
solubility isobars could be explained by the model.

Lacher(26) gave a theoretical treatment of Pd-H solutions in
which the partial energy E; is proportional to the fraction of filled

sites but the configurational entropy is ideal. The model was qualita-
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tively successful in predicting a critical temperature for concen-
trated Pd - H alloys below which two solid phases exist.
(27

Eichenauer has presented a theoretical discussion of
the solubility and diffusivity of hydrogen in metals where the solu-
bility is low. He calculated the vibrational frequency of a H-atom
in solution from the solubility data using & quasi-regular solution
model for the solid. It was shown that these calculated frequencies
were in reasonably good agreement with those calculated from the acti-
vation energy for the diffusion of H-atoms through the metal lattice
using a diffusion model due to Wert and Zener(28) in which the H-atoms

vibrate in a parabolic potential well in their lattice sites and the

potential énergy between adjacent sites varies sinusoidally.

3. The Quasi-regular Model applied to Hydrogen-Metal Solutions

In this work it is assumed that the H-atoms in solution are
bound at interstitial sites and execute many vibrations before jumping
into an adjacent site; in other words the activation energy for diffusion
is appreciably greater than the mean vibrational energy of an H-atom.
A graphical representation of the model is given in Fig. (5). The
dissociation energy of an H2 - molecule is -EEE. The difference in
energy between an H-atom in the gas and an H-atom in the solid is

Eﬁ and the enthalpy of solution of H, - molecules per atom is

2

.o _1lno 7
AH—Eu—-e-EHe-EkT. ‘ (22)

It can be seen that previous classification of H-metal solutions into
endothermic and exothermic occluders does not reflect a fundamental

difference in the solutions since H-atoms are always absorbed with the

evaluation of energy EQ and the sign of AH depends on whether Eﬁ is

greater or less than %-Eg .
2
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The treatment of the H-metal solutions is parallel to that of
N in iron and the chemical potential of an H-atom in solution is given
by equation (2) and the solubility equation is given by replacing N
with H in equations (14) and (15). For the temperature range involved
de is essentially unity. It was assumed that the octahedral interstices
were occupied so that B =1 for F.C.C. lattices and 8 = 3 for B.C.C.
lattices and for the complex &« and ¥ - Mn structures the value of R
has been taken as 3.

Plots of ln[(e/e)/(l-e/ﬂ)][TT/h/PIJi/2 ] vs 1/T will have a slope
given by - (Eh - %-Eﬁz)/k and an intercep% given by 1n A + §Z/k. These
plots are shown in figs. (6), (7), and (8) corresponding to the solu-
bility data given in Figs. (2), (3), and (4). It is to be noted that
with the exceptions of Ni and Pt the plots are good straight lines. A
computer was used to find the best values of the slopes and intefcepts
of the plots of figs (6), (7), and (8) using the method of least squares
and the values of the partial energy ﬁ; and excess partial entropy §X of
H-atoms in the solutions is presented in table (3). For the solvents
Th, Zr, and Mo the temperature range covered by the data in the one-

phase alloys is so small that no reliance can be placed on thewlues

of E and §V .
u u

L. Thermodynamic Parameters of Hydrogen-Metal Solutions

Table 3 is set out with the metals arranged in the form of the
Periodic Table. Immediately below each solvent metal is given the
value of §Z/k and then the value of —E; in k. cals/mole.

It can be seen that in all the periods the energy of solution

increases (becomes less negative) from left to right; the only exception
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TABIE 3
Ale
Values of 5:/k and - E-u 1.69
37.8
i *| vt icer? |oe-mn y-Mn | a-Fe *| yFe Co N | cu | z*| ca
2.10 | 1.31 | 5.30 | 0.39 3.80 2.53 5.17 L.26 5.21 | 2.64
65.7 | 55.9 | 32.9 |50.9 k5.0 h2.5 39.8 41.1 36.9 | 45.9
zr I Mo Y Pd Ag
o0.24 {0.46 | 0.1k 2.45
73.5 159.8 | k4.6 5 k2.3
Th
5.35
60.1 °
Tza.g‘~ Pt
1 .74 6.06
56.8 2.9

* C. P,

H.
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being Cr in the first long period where the energy of solution of an
H-atom is anomalously high. In view of the curvature no data has been
given for Ni but the best value for ﬁ; is 45.0 k. cels/mole.

In the second long period the E; - values increase regularly from
Zr o Nb - Mo and there is also & regular increase in the first long period
until Cr and then ﬁu changes only slightly from y-Mn to Ni. This con-
stancy of E; may be a reflection of the mechanism of solution. Franck(29)
suggested that if hydrogen dissolves in metals in the form of a proton

then the heat of solution can be written

E =I -w, +E , (23)

where Iu is the ionization energy of H, ﬁé is the heat of solution of
a proton, and Wﬁ is the thermionic work function of the metal solvent.
If it is assumed that amongst these transition metals ﬁé does not vary

much then ﬁh + W, should be constant. For Co, Ni, and a-Fe the values

F
of ﬁ; + Wy, are 60.55, 61.26, and 60.T6 k. cals/mole respectively but for
Cr, §£;+ W? is 73.13 k. cals/mole. Although there is good evidence

from measurements of magnetic susceptibilities in the Pd-H system that

H is ionized in Pd with the extra electrons from the H entering the holes
in the d-band, the data for WF is too scant to allow any further persual
of the ideas underlying equation (23).

There seems to be little correlation between the position of the
solvent elements in the Periodic Table and the value of §X/k. In general
the solutions with the lowest (most negative) heats of solution have
smaller partial excess entropies which would be expected since the more
tightly bound protons would vibrate with a higher frequency and give rise

to a smaller vibrational entropy. If it is assumed that §X arises only
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from uncoupled vibrations of the solute atoms, their Einstein frequency

vV can be calculated from the equation,

5, - 31«'.{—1;%&'1-—11- - 1n (1 - e'h"/kT)} . (24

Values of v calculated from this formula for T = 1000° K enable values
for the activation energy ED for the diffusion of hydrogen through the
solvent metals to be estimated from the model of Wert and Zener(28).
The values of ED are all of the right order of magnitude but show

no systematic agreement with experimental values of E Such a simple

DQ
. . =V . . . .
interpretation of the Su data is almost certainly invalidated by the
neglect of the lattice contribution to the excess entropy and the
neglect of the change in electronic specific heat and the uncoupling

of electron spins which may occur when the extra electron enters the

Fermi ecnergy levels of the solvent metal.
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D. CONCLUSIONS

The work presented in this report involves the analysis of data
for the equilibrium between gaseous phases and very dilute interstitial
s0l1id sclutions in order to derive the useful thermodynamic parameters of
- solute atoms which are essentially isolated in a solvent matrix. The
method used does not imvolve using extraneous data for equilibriums
with the phase defining a standard state and the data have been pre-
sented as partial quantities instead of the more usual relative partial
quantities.

The energy data have proved useful in discussing problems con-
nected with the solubility of Fe3C in ferrite(lS) and the diffusion of C

through ferrite(lT).

The partiael energy of solution of hydrogen in metals
has been shown to depend in a fairly regular fashion on the position of
the solvent metal in the Periodic Table.

The excess entropies deduced for Ag~0O and Fe~N solutions(S)
have been interpreted as vibrational entropies and their magnitude can
be explained(S) by a simple model in which the entropy change due to the
shear and dilational strains in the matrix concomitant with the insertion
of a solute atom(3o). The §Z data for hydrogen alloys are not easy to

interpret since it is probable that electronic specific heat changes make

a large contribution to the excess entropy.
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